
INTEGERS MODULO n

PAUL L. BAILEY

Abstract. We define and explore the ring of integers modulo n.

1. Well-Ordering Principle

First we establish a few properties of the integers which we need in order
to understand the ring of integers modulo n. One tool which can be used to
establish these properties is the Well-Ordering Principle.

Proposition 1. Well-Ordering Principle
Let X ⊂ N be a nonempty set of natural numbers. Then X contains a smallest,
element; that is, there exists x0 ∈ X such that for every x ∈ X, x ≤ x0.

Proof. Since X is nonempty, it contains an element, say x1. If x1 is the smallest
member of X, we are done, so assume that the set

Y = {x ∈ X | y < x1}
is nonempty. Since there are only finitely many natural numbers less than a
given natural number, Y is finite.

Proceed by induction on (mod Y ). If (mod Y ) = 1, then Y contains exactly
one element, which is vacuously the smallest member of Y .

Now assume that (mod Y ) = n. By induction, we assume that any nonempty
set with less than n elements contains a smallest member. Since Y is nonempty,
let x2 ∈ Y . If x2 is the smallest member of Y , we are done, so assume that the
set

Z = {x ∈ Y | x < x2}
is nonempty. Since x2 /∈ Z, (mod Z) < n, so Z contains a smallest member (by
our inductive hypothesis), say x0. Then x0 is also smaller than any element in
Y . This completes the proof by induction.

Thus every finite set of natural numbers has a smallest element, and since
Y is finite, is has a smallest element. This element is the smallest member of
X. �
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2. Division Algorithm

Definition 1. Let m,n ∈ Z. We say that m divides n, and write m | n, if there
exists an integer k such that n = km.

Exercise 1. Show that the relation | is a partial order on the set of positive
integers.

Proposition 2. Division Algorithm for Integers
Let m,n ∈ Z. There exist unique integers q, r ∈ Z such that

n = qm + r and 0 ≤ r < (mod m).

Proof. Let X = {z ∈ Z | z = n − km for some k ∈ Z}. The subset of X
consisting of nonnegative integers is a subset of N, and by the Well-Ordering
Principle, contains a smallest member, say r. That is, r = n − qm for some
q ∈ Z, so n = qm + r. We know 0 ≤ r. Also, r < (mod m), for otherwise,
r − (mod m) is positive, less than r, and in X.

For uniqueness, assume n = q1m+r1 and n = q2m+r2, where q1, r1, q2, r2 ∈ Z,
0 ≤ r1 < m, and 0 ≤ r2 < m. Then m(q1−q2) = r1−r2; also −m < r1−r2 < m.
Since m | (r1 − r2), we must have r1 − r2 = 0. Thus r1 = r2, which forces
q1 = q2. �

Definition 2. Let m,n ∈ Z. A greatest common divisor of m and n, denoted
gcd(m,n), is a positive integer d such that

(1) d | m and d | n;
(2) If e | m and e | n, then e | d.

Proposition 3. Let m,n ∈ Z. Then there exists a unique d ∈ Z such that
d = gcd(m,n), and there exist integers x, y ∈ Z such that

d = xm + yn.

Proof. Let X = {z ∈ Z | z = xm + yn for some x, y ∈ Z}. Then the subset
of X consisting of positive integers contains a smallest member, say d, where
d = xm + yn for some x, y ∈ Z.

Now m = qd+ r for some q, r ∈ Z with 0 ≤ r < d. Then m = q(xm+ yn)+ r,
so r = (1 − qxm)m + (qy)n ∈ X. Since r < d and d is the smallest positive
integer in X, we have r = 0. Thus d | m. Similarly, d | n.

If e | m and e | n, then m = ke and n = le for some k, l ∈ Z. Then
d = xke + yle = (xk + yl)e. Therefore e | d. This shows that d = gcd(m,n).

For uniqueness of a greatest common divisor, suppose that e also satifies the
conditions of a gcd. Then d | e and e | d. Thus d = ie and e = jd for some
i, j ∈ Z. Then d = ijd, so ij = 1. Since i and j are integers, then i = ±1. Since
d and e are both positive, we must have i = 1. Thus d = e. �

Exercise 2. Let m,n ∈ Z and suppose that there exist integers x, y ∈ Z such
that xm + yn = 1. Show that gcd(m,n) = 1.

Exercise 3. Let m,n ∈ N and suppose that m | n. Show that gcd(m,n) = m.
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3. Euclidean Algorithm

There is an effective procedure for finding the greatest common divisor of two
integers. It is based on the following proposition.

Proposition 4. Let m,n ∈ Z, and let q, r ∈ Z be the unique integers such that
n = qm + r and 0 ≤ r < m. Then gcd(n, m) = gcd(m, r).

Proof. Let d1 = gcd(n, m) and d2 = gcd(m, r). Since “divides” is a partial order
on the positive integers, it suffices to show that d1 | d2 and d2 | d1.

By definition of common divisor, we have integers w, x, y, z ∈ Z such that
d1w = n, d1x = m, d2y = m, and d2z = r.

Then d1w = qd1x + r, so r = d1(w − qx), and d1 | r. Also d1 | m, so d1 | d2

by definition of gcd.
On the other hand, n = qd2y + d2z = d2(qy + z), so d2 | n. Also d2 | m, so

d2 | d1 by definition of gcd. �

Now let m,n ∈ Z be arbitrary integers, and write n = mq + r, where 0 ≤
r < m. Let r0 = n, r1 = m, r2 = r, and q1 = q. Then the equation becomes
r0 = r1q1 + r2. Repeat the process by writing m = rq2 + r3, which is the same
as r1 = r2q2 + r3, with 0 ≤ r3 < r2. Continue in this manner, so in the ith stage,
we have ri−1 = riqi + ri+1, with 0 ≤ ri+1 < ri. Since ri keeps getting smaller, it
must eventually reach zero.

Let k be the smallest integer such that rk+1 = 0. By the above proposition
and induction,

gcd(n, m) = gcd(m, r) = · · · = gcd(rk−1, rk).

But rk−1 = rkqk +rk+1 = rkqk. Thus rk | rk−1, so gcd(rk−1, rk) = rk. Therefore
gcd(n, m) = rk. This process for finding the gcd is known as the Euclidean
Algorithm.

In order to find the unique integers x and y such that xm + yn = gcd(m,n),
use the equations derived above and work backward. Start with rk = rk−2 −
rk−1qk−1. Substitute the previous equation rk−1 = rk−3 − rk−2qk−2 into this
one to obtain

rk = rk−2 − (rk−3 − rk−2qk−2)qk−1) = rk−2(qk−2qk−1 + 1)− rk−3qk−1.

Continuing in this way until you arrive back at the beginning.
For example, let n = 210 and m = 165. Work forward to find the gcd:
• 210 = 165 · 1 + 45;
• 165 = 45 · 3 + 30;
• 45 = 30 · 1 + 15;
• 30 = 15 · 2 + 0.

Therefore, gcd(210, 165) = 15. Now work backwards to find the coefficients:
• 15 = 45− 30 · 1;
• 15 = 45− (165− 45 · 3) = 45 · 4− 165;
• 15 = (210− 165) · 4− 165 = 210 · 4− 165 · 5.

Therefore, 15 = 210 · 4 + 165 · (−5).
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4. Prime Integers

Definition 3. An integer p ∈ Z is called prime if
(1) p ≥ 2;
(2) p | ab ⇒ p | a or p | b, where a, b ∈ N.

Definition 4. An integer p ∈ Z is called irreducible if
(1) p ≥ 2;
(2) p = ab ⇒ a = 1 or b = 1, where a, b ∈ N.

Exercise 4. Let p ∈ Z. Show that p is prime if and only if p is irreducible.

Exercise 5. Let a, p ∈ Z such that p is prime.
Show that gcd(a, p) = 1 or gcd(a, p) = p.

Here is an interesting exercise. The standard proof is by contradiction.

Exercise 6. Show that there are infinitely many prime integers.
(Hint: assume there are only finitely many, multiply them, and add 1.)

The following series of exercises constitutes a proof that every integer greater
than one has a unique factorization into prime integers.

Exercise 7. Let p ∈ Z be prime and let m,n ∈ Z.
Show that if p | mn, then p | m or p | n.

Exercise 8. Let p ∈ Z be prime and let n1, . . . , nr ∈ Z.
Show that if p | n1 . . . nr, then p | ni for some i = 1, . . . , r.
(Hint: proceed by induction on r.)

Exercise 9. Let a ∈ Z such that a ≥ 2.
Show that a = p1 . . . p2, where pi is prime for i = 1, . . . , r.
(Hint: proceed by strong induction on n.)

Exercise 10. Let p1, . . . , pr, q1, . . . , qs be prime integers.
Show that if p1 . . . pr = q1 . . . qs, then r = s and that the qj ’s can be relabeled
so that pi = qi for i = 1, . . . , r.
(Hint: assume not, and let m be the smallest integer that has two different prime
factorizations.)
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5. Congruence Modulo n

Definition 5. Let n ∈ N, and define a relation ≡n on Z by

a ≡n b ⇔ n | (a− b).

This relation is called congruence modulo n; that is, if a ≡n b, we say that a is
congruent to b modulo n. Sometimes this is written a ≡ b (mod n). If the n is
understood, we may drop the “ (mod n)” from the notation.

Proposition 5. Let n ∈ N. Then ≡n is an equivalence relation on Z.

Proof. We wish to show that ≡n is reflexive, symmetric, and transitive.
(Reflexivity) Let a ∈ Z. Now 0 · n = 0 = a − a; thus n | (a − a), so a ≡ a.

Therefore ≡ is reflexive.
(Symmetry) Let a, b ∈ Z. Suppose that a ≡ b; then n | (a − b). Then there

exists k ∈ Z such that nk = a − b. Then n(−k) = b − a, so n | (b − a). Thus
b ≡ a. Similarly, b ≡ a ⇒ a ≡ b. Therefore ≡ is symmetric.

(Transitivity) Let a, b, c ∈ Z, and suppose that a ≡ b and b ≡ c. Then
nk = a− b and nl = b− c for some k, l ∈ Z. Then a− c = nk− nl = n(k− l), so
n | (a− c). Thus a ≡ c. Therefore ≡ is transitive. �

Proposition 6. Let n ∈ N and let a1, a2 ∈ Z. By the Division Algorithm, there
exist unique integers q1, r1, q2, r2 ∈ Z such that

• a1 = nq1 + r1, where 0 ≤ r1 < n;
• a2 = nq2 + r2, where 0 ≤ r2 < n.

Then a1 ≡ a2 (mod n) if and only if r1 = r2.

Proof.
(⇒) Suppose that a1 ≡ a2. Then n | (a1−a2). This means that nk = a1−a2

for some k ∈ Z. But a1−a2 = n(q1−q2)+(r1−r2). Then n(k+q1−q2) = r1−r2,
so n | r1 − r2.

Multiplying the inequality 0 ≤ r2 < n by −1 gives −n < −r2 ≤ 0. Adding
this inequality to the inequality 0 ≤ r1 < n gives −n < r1 − r2 < n. But r1 − r2

is an integer multiple of n; the only possibility, then, is that r1 − r2 = 0. Thus
r1 = r2.

(⇐) Suppose that r1 = r2. Then a1 − a2 = nq1 − nq2 = n(q1 − q2). Thus
n | (a1 − a2), so a1 ≡ a2. �
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6. Integers Modulo n

Definition 6. The partition of Z induced by the equivalence relation ≡n is
called the set of integers modulo n, and is denoted Zn. For an integer a ∈ Z,
denote its equivalence class under the equivalence relation by [a]n. If the n is
understood, we may write this equivalence class as [a] or a.

An element r ∈ Z is called a preferred representative for [a]n if r ∈ [a]n and
0 ≤ r < n.

The division algorithm for the integers assures us that there is a unique pre-
ferred representative for each equivalence class. Also, as r ranges over the integers
from 0 to n− 1, the equivalence classes [r]n are distinct. Thus there are exactly
n equivalence classes in the set of integers modulo n; that is, (mod Zn) = n.
For example,

Z7 = {0, 1, 2, 3, 4, 5, 6}.

Proposition 7. Let n ∈ Z. Define the binary operations of addition and multi-
plication in Zn by

a + b = a + b and a · b = ab.

These operations are well-defined.

Proof. Select a1, a2, b1, b2 ∈ Z such that a1 ≡ a2 and b1 ≡ b2; say a1 − a2 = kn
and b1 − b2 = ln for some k, l ∈ Z.

(Addition) We wish to show that a1 + b1 = a2 + b2, i.e., that a1+b1 ≡ a2+b2.
We simply add the equations above to obtain

a1 − a2 + b1 − b2 = kn + ln;

thus
(a1 + b1)− (a2 + b2) = (k + l)n;

from this, n | ((a1 + b1)− (a2 + b2)), so a1 + b1 ≡ a2 + b2.
(Multiplication) We wish to show that a1 · b1 = a2 · b2, i.e., that a1b1 ≡ a2b2.

To do this, adjust the original equations to obtain

a1 = a2 + kn and b1 = b2 + ln

and multiply them to obtain

a1b1 = a2b2 + a2ln + b2kn + kln2,

whence
a1b1 − a2b2 = (a2l + b2k + kln)n;

thus n | (a1b1 − a2b2), so a1b1 ≡ a2b2. �
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7. The Group of Integers Modulo n

Proposition 8. Addition on Zn is commutative, associative, and invertible, with
identity element 0.

Proof. Now select a, b ∈ Z so that a, b, and c are arbitrary members of Zn.
To see that + is commutative, note that

a + b = a + b by definition of +

= b + a by commutativity in Z

= b + a

To see that + is associative, note that

(a + b) + c = a + b + c

= (a + b) + c

= a + (b + c)

= a + b + c

= a + (b + c).

To see that 0 is an additive identity, note that 0 + a = 0 + a = a.
The additive inverse of a is −a, since a +−a = a− a = 0. �

Remark 1. A group (G, ·, e) is a set G together with a binary operation

· : G×G → G

which is associative and invertible with identity element e. If the operation is
also commutative, the group is called an abelian group.

The above proposition tells us that (Zn,+, 0) is an abelian group.
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8. Order of an Element in Zn

For any k ∈ N and any a ∈ Zn, define ka to be a added to itself k times:

ka =
k∑

i=1

a.

Proposition 9. Let k ∈ N and a ∈ Zn. Then ka = ka.

Proof. Since addition is associative, we can ignore parentheses. Then

ka =
k∑

i=1

a =
k∑

i=1

a = ka.

�

Definition 7. Let a ∈ Zn. Define the order of a to be smallest positive integer
k such that ka = 0. The order of a is denoted ord(a).

Proposition 10. Let a ∈ Zn and let ord(a) = k. Then
(a) ja = 0 ⇔ k | j;
(b) na = 0;
(c) k | n.

Proof.
(a) If k | j, then j = lk for some l ∈ Z. In this case, ja = l0 = 0.
Conversely, suppose that ja = 0. Write j = qk + r, where 0 ≤ r < k. Then

ja = qka+ra = ra since ka = 0. But k is the smallest positive integer such that
ka = 0. Thus r = 0, and j = qk. Thus k | j.

(b) Note that na = na = 0. Thus na = 0.
(c) By (b), na = 0. Thus k | n by part (a). �

Exercise 11. Let a ∈ Zn and let d = gcd(a, n).
Then ord(a) = n

d .
(Hint: let k = ord(a), and show that k | n

d and that n
d | k.)

Exercise 12. Find the order of 6, 11, 18, and 28 in Z36.
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9. The Ring of Integers Modulo n

Proposition 11. Multiplication on Zn is commutative and associative, with
identity element 1. Furthermore, multiplication distributes over addition:

a · (b + c) = (a · b) + (a · c)
for all a, b, c ∈ Z.

Proof. Select a, b, c ∈ Z so that a, b, and c are arbitrary members of Zn.
(Commutativity) a · b = ab = ba = b · a.
(Associativity) (a · b) · c = ab · c = abc = a · bc = a · (b · c).
(Identity) a · 1 = a · 1 = a = 1 · a = 1 · a.
(Distributivity)

a · (b + c) = a · b + c = a(b + c) = ab + ac = ab + ac = (a · b) + (a · c). �

Remark 2. A ring (R,+, 0, ·, 1) is a set R together with a pair of binary op-
erations + and · such that + is commutative, associative, and invertible with
identity element 0, and · is associative with identity element 1, such that · dis-
tributes over +. If additionally · is commutative, the ring is called a commutative
ring.

The above proposition, together with the fact that addition is commutative,
associative, and invertible, say that (Zn,+, 0, ·, 1) is a commutative ring.

Proposition 12. Let a ∈ Zn. Then a · 0 = 0 · a = 0.

Proof. By definition of multiplication in Zn, a · 0 = a · 0 = 0 = 0 · a = 0 · a. �

An element a ∈ Zn is called invertible if there exists an element b ∈ Zn such
that a · b = 1.

Proposition 13. Let n ∈ N and let a ∈ Zn.
Then a is invertible if and only if gcd(a, n) = 1.

Proof.
(⇒) Suppose that a is invertible, and let b be its inverse. Then ab = 1, so

ab ≡ 1 (mod n). That is, kn = ab − 1 for some k ∈ Z. Thus ab + (−k)n = 1.
Therefore gcd(a, n) = 1.

(⇐) Suppose that gcd(a, n) = 1. Then there exist x, y ∈ Z such that xa+yn =
1. Then x · a + y · n = 1. But n = 0, so y · n = 0. Thus x · a = 1, and x is the
inverse of a, so a is invertible. �

Exercise 13. Let p ∈ N be a prime number.
Show that every nonzero element of Zp is invertible.

An element a ∈ Zn is called a zero divisor if it is not zero and if there exists
a nonzero element b ∈ Zn such that a · b = 0.

For example, in Z6, the invertible elements are 1 and 5. The zero divisors are
2, 3, and 4. For example, 3 · 4 = 12 = 0.

Exercise 14. Let n ∈ N and let a ∈ Zn be a nonzero element.
Show that a is invertible if and only if a is not a zero divisor.

Exercise 15. Show that if n ∈ N is not a prime number, then Zn contains zero
divisors.



10

10. Algebraic Equations in Zn

It is convenient to drop the BAR notation. That is, all numbers are to be
interpreted as members of Zn for some fixed n, and if we say 0, 1, or a, we mean
0, 1, or a.

Having dropped the BAR notation, we use the preferred representatives for
equivalence classes. Note that −a = −a = n− a. For example, in Z8, we have
−2 = 6 and −4 = 4 (modulo 8).

We now turn our attention to the question of when an equation, such as
14x = 1 or x2 + 1 = 0, has a solution in Zn, and how many solutions it has. For
example, 14x = 1 has a solution if and only if 14 is invertible in Zn, and this is
the case if and only if n and 14 are relatively prime. In fact, we have an expicit
technique for finding the inverse 14. This technique makes repeated use of the
division algorithm.

Suppose n = 33. Then 14 and 33 are relatively prime, so there exist integers
x and y such that 14x + 33y = 1. To find them, we divide:

• 33 = 14 · 2 + 5;
• 14 = 5 · 2 + 4
• 5 = 4 · 1 + 1;
• 2 = 1 · 2 + 0.

The second to last remainder is 1, so gcd(14, 33) = 1. Now work backwards
to find x and y:

• 1 = 5− 4;
• 1 = 5− (14− 5 · 2) = 5 · 3− 14 · 1;
• 1 = (33− 14 · 2) · 3− 14 · 1 = 33 · 3− 14 · 7.

Thus the inverse of 14 in Z33 is −7 = 26.

Exercise 16. Find the inverse of 15 in Z49.

The equation x2 + 1 = 0 is more interesting. To understand it, note that −1
exists in Zn as n− 1. So a solution to the equation x2 +1 = 0 would be a square
root of negative 1 in Zn. For example, in Z5, we have 22 = 4 = −1 (mod 5).

It is also possible that a quadratic equation, such as x2 − 1 = 0, can have
more than two solutions in Zn. Note that x2 − 1 = (x + 1)(x − 1), even in Zn.
Suppose that n = 15. Then x = 1 and x = −1 = 14 are solutions, but so is 4,
since (4 + 1)(4− 1) = 5 · 3 = 0 (modulo 15).

However, suppose that n = p is a prime number. Then in Zp, a quadratic
equation can have at most 2 roots. This is because Zp has no zero divisors. If
the quadratic has a root, it factors; then if the product of the factors is zero, one
of them must be zero.

For example, let us find the roots of x2 + 8x + 1 = 0 in Z11. Now 8 ≡
−3 (mod 11) and 1 ≡ −10 (mod 11), so our equation becomes x2− 3x− 10 = 0.
This factors as (x − 5)(x + 2) = 0. Since 11 is prime, the only roots are 5 and
−2 = 8.

Exercise 17. Find all square roots of −1 in Z101.
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